
What can we learn from TMDs?
Matthias Burkardt

burkardt@nmsu.edu

New Mexico State University

What can we learn from TMDs? – p.1/58



Outline
0.2

0.4
0.6

0.8
1

-1
-0.5

0
0.5

1
0

2

4

6

8

0

2

4

b?(fm) x
Probabilistic interpretation of GPDs as
Fourier transforms of impact parameter
dependent PDFs

H(x, 0,−∆2
⊥) −→ q(x,b⊥)

H̃(x, 0,−∆2
⊥) −→ ∆q(x,b⊥)

E(x, 0,−∆2
⊥) −→ ⊥ distortion of PDFs when the

target is ⊥ polarized
Chromodynamik lensing and ⊥ single-spin
asymmetries (SSA)

transverse distortion of PDFs
+ final state interactions

}

⇒ ⊥ SSA in γN −→ π+X

Sivers
Boer-Mulders
peanuts, bagels, pretzels, worm-gear, ...

Summary

~pγ ~pN d

u

π+
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Impact parameter dependent PDFs

define ⊥ localized state [D.Soper,PRD15, 1141 (1977)]

∣

∣p+,R⊥ = 0⊥, λ
〉

≡ N
∫

d2p⊥
∣

∣p+,p⊥, λ
〉

Note: ⊥ boosts in IMF form Galilean subgroup⇒ this state has
R⊥ ≡ 1

P+

∫

dx−d2x⊥ x⊥T
++(x) =

∑

i xiri,⊥ = 0⊥
(cf.: working in CM frame in nonrel. physics)

define impact parameter dependent PDF

q(x,b⊥) ≡
∫

dx−

4π

〈

p+,R⊥ = 0⊥
∣

∣ q̄(−x
−

2
,b⊥)γ+q(

x−

2
,b⊥)

∣

∣p+,R⊥ = 0⊥
〉

eixp+x−

→֒ q(x,b⊥) =
∫

d2∆⊥

(2π)2 e
i∆⊥·b⊥H(x, 0,−∆2

⊥),

∆q(x,b⊥) =
∫

d2∆⊥

(2π)2 e
i∆⊥·b⊥H̃(x, 0,−∆2

⊥),
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x = 0.5

x = 0.3

bx

by

bx

by

bx

by

x = 0.1

q(x,b⊥) for unpol. p
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x = momentum fraction of the quark

~b =⊥ position of the quark
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Transversely Deformed Distributions andE(x, 0,−∆
2
⊥)

M.B., Int.J.Mod.Phys.A18, 173 (2003)

So far: only unpolarized (or long. pol.) nucleon! In general (ξ = 0):

∫

dx−

4π eip+x−x 〈P+∆,↑|q̄(0) γ+q(x−)|P,↑〉 = H(x,0,−∆2
⊥)

∫

dx−

4π eip+x−x 〈P+∆,↑|q̄(0) γ+q(x−)|P,↓〉 = −∆x−i∆y

2M E(x,0,−∆2
⊥).

Consider nucleon polarized in x direction (in IMF)
|X〉 ≡ |p+,R⊥ = 0⊥, ↑〉+ |p+,R⊥ = 0⊥, ↓〉.

→֒ unpolarized quark distribution for this state:

q(x,b⊥) = H(x,b⊥)− 1

2M

∂

∂by

∫

d2∆⊥
(2π)2

E(x, 0,−∆2
⊥)e−ib⊥·∆⊥

Physics: j+ = j0 + j3, and left-right asymmetry from j3 !
[X.Ji, PRL 91, 062001 (2003)]
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Intuitive connection with ~Jq

DIS probes quark momentum density in the infinite momentum
frame (IMF). Quark density in IMF corresponds to j+ = j0 + j3

component in rest frame (~pγ∗ in −ẑ direction)

→֒ j+ larger than j0 when quark current towards the γ∗;
suppressed when away from γ∗

→֒ For quarks with positive orbital angular momentum in x̂-direction,
jz is positive on the +ŷ side, and negative on the −ŷ side

~pγ
ẑ

ŷ
jz > 0

jz < 0
Details of ⊥ deformation described by Eq(x, 0,−∆2

⊥)

→֒ not surprising that Eq(x, 0,−∆2
⊥) enters Ji relation!

〈

J i
q

〉

= Si

∫

dx [Hq(x, 0, 0) + Eq(x, 0, 0)] x.
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The Ji-relation (poor man’s derivation)

What distinguishes the Ji-decomposition from other
decompositions is the fact that Lq can be constrained by
experiment:

〈 ~Jq〉 = ~S

∫ 1

−1

dxx [Hq(x, ξ, 0) +Eq(x, ξ, 0)]

(nucleon at rest; ~S is nucleon spin)

→֒ Lz
q = Jz

q − 1
2∆q

derivation (MB-version):
consider nucleon state that is an eigenstate under rotation
about the x̂-axis (e.g. nucleon polarized in x̂ direction with
~p = 0 (wave packet if necessary)

for such a state, 〈T 00
q y〉 = 0 = 〈T zz

q y〉 and 〈T 0y
q z〉 = −〈T 0z

q y〉
→֒ 〈T++

q y〉 = 〈T 0y
q z − T 0z

q y〉 = 〈Jx
q 〉

→֒ relate 2nd moment of ⊥ flavor dipole moment to Jx
q
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The Ji-relation (poor man’s derivation)

derivation (MB-version):
consider nucleon state that is an eigenstate under rotation
about the x̂-axis (e.g. nucleon polarized in x̂ direction with
~p = 0 (wave packet if necessary)

for such a state, 〈T 00
q y〉 = 0 = 〈T zz

q y〉 and 〈T 0y
q z〉 = −〈T 0z

q y〉
→֒ 〈T++

q y〉 = 〈T 0y
q z − T 0z

q y〉 = 〈Jx
q 〉

→֒ relate 2nd moment of ⊥ flavor dipole moment to Jx
q

effect sum of two effects:
〈T++y〉 for a point-like transversely polarized nucleon
〈T++

q y〉 for a quark relative to the center of momentum of a
transversely polarized nucleon

2nd moment of ⊥ flavor dipole moment for point-like nucleon

ψ =

(

f(r)
~σ·~p

E+mf(r)

)

χ with χ =
1√
2

(

1

1

)
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The Ji-relation (poor man’s derivation)

derivation (MB-version):

T 0z
q = iq̄

(

γ0∂z + γz∂0
)

q

since ψ†∂zψ is even under y → −y, iq̄γ0∂zq does not
contribute to 〈T 0zy〉

→֒ using i∂0ψ = Eψ, one finds

〈T 0zby〉 = E

∫

d3rψ†γ0γzψy = E

∫

d3rψ†

(

0 σz

σz 0

)

ψy

=
2E

E +M

∫

d3rχ†σzσyχf(r)(−i)∂yf(r)y =
E

E +M

∫

d3rf2(r)

consider nucleon state with ~p = 0, i.e. E = M &
∫

d3rf2(r) = 1

→֒ 2nd moment of ⊥ flavor dipole moment 〈T++
q y〉 = 〈T 0zby〉 = 1

2

→֒ ‘overall shift’ of nucleon COM yields contribution
1
2

∫

dxxHq(x, 0, 0) to 〈T++
q y〉
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The Ji-relation (poor man’s derivation)

spherically symmetric wave packet for Dirac particle with Jx = 1
2

centered around the origin has ⊥ center of momentum 1
M 〈T++

q by〉
not at origin, but at 1

2M !

consistent with

1

2
= 〈Jx〉 = 〈

(

T 0zby − T 0ybz
)

〉 = 2〈T 0zby〉 = 〈T++by〉

‘overall shift of ⊥ COM yields contribution 1
2

∫

dxxHq(x, 0, 0)

to 〈T++
q by〉

intrinsic distortion adds 1
2

∫

dxxEq(x, 0, 0) to that

→֒ Ji relation 1
2 = 〈Jx〉 = 1

2

∫

dxx [Hq(x, 0, 0) +Eq(x, 0, 0)]
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Transversely Deformed PDFs andE(x, 0,−∆
2
⊥)

q(x,b⊥) in ⊥ polarized nucleon is deformed compared to
longitudinally polarized nucleons !

mean ⊥ deformation of flavor q (⊥ flavor dipole moment)

dq
y ≡

∫

dx

∫

d2b⊥qX(x,b⊥)by =
1

2M

∫

dxEq(x, 0, 0) =
κp

q

2M

with κp
u/d ≡ F

u/d
2 (0) = O(1− 2) ⇒ dq

y = O(0.2fm)

simple model: for simplicity, make ansatz where Eq ∝ Hq

Eu(x, 0,−∆2
⊥) =

κp
u

2
Hu(x, 0,−∆2

⊥)

Ed(x, 0,−∆2
⊥) = κ

p
dHd(x, 0,−∆2

⊥)

with κp
u = 2κp + κn = 1.673 κ

p
d = 2κn + κp = −2.033.

Model too simple but illustrates that anticipated deformation is
very significant since κu and κd known to be large!
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x = 0.5x = 0.5

x = 0.3x = 0.3

bx

by

bx

by

bx

by

bx

by

bx

by

bx

by

x = 0.1

u(x,b⊥) d(x,b⊥)

~pγ
ẑ

ŷ
jz > 0

jz < 0

p polarized in +x̂ direction

lattice (→ Ph.Hägler)
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GPD←→ SSA (Sivers)

example: γp→ πX

~pγ ~pN d

u

π+

u, d distributions in ⊥ polarized proton have left-right asymmetry in
⊥ position space (T-even!); sign “determined” by κu & κd

attractive FSI deflects active quark towards the center of momentum

→֒ FSI translates position space distortion (before the quark is
knocked out) in +ŷ-direction into momentum asymmetry that
favors −ŷ direction

→֒ correlation between sign of κp
q and sign of SSA: f⊥q

1T ∼ −κp
q

f
⊥q
1T ∼ −κp

q confirmed by HERMES data (also consistent with

COMPASS deuteron data f⊥u
1T + f⊥d

1T ≈ 0)
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IPDs on the lattice (→ Ph.Hägler)

lowest moment of distribution q(x,b⊥) for unpol. quarks in ⊥ pol.
proton (left) and of ⊥ pol. quarks in unpol. proton (right):
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Sivers ?↔ GPDs

intuitive picture (‘chromodynamic lensing’) sign of deformation
↔ E(x, 0, t)↔ sign of Sivers

quantitative relation: need model for FSI!
treat FSI to lowest order (implicit in many TMD models)

→֒ average ⊥ momentum of quarks with flavor q

〈ki,q〉 =
g

4p+

∫

d2y⊥
2π

yi

y2
⊥
〈P, S| q̄(y)γ+λ

a

2
q(y)ρa(0⊥) |P, S〉

with ρa(y⊥) =
∫

dy−j+a(y−,y⊥)

→֒ sensitive to color density-density correlations
if quarks of flavor q are shifted to positive y2 (e.g. u quarks in
proton polarized in +x̂ direction then y2) then y2 in interal
more likely to be positive and,

→֒ (incl. ‘-’ from color wave function) 〈ki,q〉 < 0
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Sivers ?↔ GPDs

valence wave function: color density-density correlation −→ − 4
3×

color-neutral density-density correlation

〈ki,q〉 =
g

4p+

4

3

∫

d2y⊥
2π

yi

y2
⊥
〈P, S| q̄(0)γ+q(0)ρ(y⊥) |P, S〉

more quantitative relations require further assumptions obout
relation between single particle distribution in COM frame and
density-density correlation (e.g. factorization)

spectator models: 1-1 correspondence between single particle
distribution in COM fram and density-density correlation (e.g.
factorization) as impact parameter b⊥ (displacement from COM)
and r⊥ (displacement from spectator) related b⊥ = (1− x)r⊥

→֒ chromodynamic lensing exact in such models

→֒ possible to derive exact relations between Sivers and GPDs in
such models (→ I.Schmidt, A.Metz,...)
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Transversity Distribution in Unpolarized Target (sign)

Consider quark state with angular momentum out of the plane
→֒ that state has transversity out of plane

expect counterclockwise net current q̄~γq associated with the
magnetization density in this state

→֒ q̄γzq pos. at the top and neg. at bottom

virtual photon ‘sees’ enhancement of quarks with transversity out
of plane at the top, and transversity into plane at bottom

physics: sideways shift of COM: 〈Jy
q 〉 ↔

∫

dz−d2z⊥〈T++(z)zy〉
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Transversity Distribution in Unpolarized Target
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IPDs on the lattice (→ Ph.Hägler)

lowest moment of distribution q(x,b⊥) for unpol. quarks in ⊥ pol.
proton (left) and of ⊥ pol. quarks in unpol. proton (right):
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Boer-Mulders Function

SIDIS: attractive FSI expected to convert position space
asymmetry into momentum space asymmetry

→֒ e.g. quarks at negative bx with spin in +ŷ get deflected (due to
FSI) into +x̂ direction

→֒ Interpretation of M2d2 ≡ 3M2
∫

dxx2ḡ2(x) as ⊥ force on active
quark in DIS in the instant after being struck by the virtual photon

〈F y(0)〉 = −M2d2 (rest frame; Sx = 1)

In combination with measurements of f2

color-electric/magnetic force M2

4 χE and M2

2 χM

κq/p ⇒ ⊥ deformation⇒ d
u/p
2 > 0 & d

d/p
2 < 0 (attractive FSI)

combine measurement of d2 with that of f⊥1T ⇒ range of FSI

x2-moment of chirally odd twist-3 PDF e(x) −→ transverse force on

transversly polarized quark in unpolarized target (↔ Boer-Mulders
h⊥1 )(qualitative) connection between Boer-Mulders function
h⊥1 (x,k⊥) and the chirally odd GPD ĒT that is similar to
(qualitative) connection between Sivers function ⊥ ( k ) and
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probing BM function in tagged SIDIS

how do you measure the transversity distribution of quarks without
measuring the transversity of a quark?

consider semi-inclusive pion production off unpolarized target

spin-orbit correlations in target wave function provide correlation
between (primordial) quark transversity and impact parameter

→֒ (attractive) FSI provides correlation between quark spin and ⊥
quark momentum⇒ BM function

Collins effect: left-right asymmetry of π distribution in
fragmentation of ⊥ polarized quark⇒ ‘tag’ quark spin

→֒ cos(2φ) modulation of π distribution relative to lepton scattering
plane

→֒ cos(2φ) asymmetry proportional to: Collins × BM

What can we learn from TMDs? – p.21/58



probing BM function in tagged SIDIS

Primordial Quark Transversity Distribution

⊥ quark pol.
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⊥ polarization and γ∗ absorption

QED: when the γ∗ scatters off ⊥ polarized quark, the ⊥
polarization gets modified

gets reduced in size
gets tilted symmetrically w.r.t. normal of the scattering plane

quark pol. before γ∗ absorption

quark pol. after γ∗ absorption

lepton scattering plane
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probing BM function in tagged SIDIS

Primordial Quark Transversity Distribution

⊥ quark pol.
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probing BM function in tagged SIDIS

Quark Transversity Distribution after γ∗ absorption

⊥ quark pol.

quark transversity component in lepton scattering plane flips

lepton scattering plane
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probing BM function in tagged SIDIS

⊥ momentum due to FSI

⊥ quark pol.

k
q
⊥ due to FSI

on average, FSI deflects quarks towards the center

lepton scattering plane
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Collins effect

When a ⊥ polarized struck quark fragments, the strucure of jet is
sensitive to polarization of quark

distribution of hadrons relative to ⊥ polarization direction may be
left-right asymmetric

asymmetry parameterized by Collins fragmentation function

Artru model:
struck quark forms pion with q̄ from qq̄ pair with 3P0 ‘vacuum’
quantum numbers

→֒ pion ‘inherits’ OAM in direction of ⊥ spin of struck quark
→֒ produced pion preferentially moves to left when looking into

direction of motion of fragmenting quark with spin up

Artru model confirmed by HERMES experiment

more precise determination of Collins function under way (KEK)
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probing BM function in tagged SIDIS

⊥ momentum due to Collins

⊥ quark pol.
k⊥ due to Collins

k
q
⊥ due to FSI

SSA of π in jet emanating from ⊥ pol. q

lepton scattering plane
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probing BM function in tagged SIDIS

net ⊥ momentum (FSI+Collins)

lepton scattering plane

k⊥ due to Collins

net k
q
⊥

k
q
⊥ due to FSI

→֒ in this example, enhancement of pions with ⊥ momenta ⊥ to lepton plane
What can we learn from TMDs? – p.29/58



probing BM function in tagged SIDIS

net kπ
⊥ (FSI + Collins)

lepton scattering plane

net k
q
⊥

→֒ expect enhancement of pions with ⊥ momenta ⊥ to lepton plane
What can we learn from TMDs? – p.30/58



π+/π− cos 2φ asymmetry

including both favored H⊥1f and unfavored H⊥1u fragmentation one
finds for the contribution from Boer-Mulders-Collins to the cos 2φ
moment of the X-section

σ
cos 2φ
π+ = h⊥1u ×H⊥1,fav + h⊥1d ×H⊥1,unfav

σ
cos 2φ
π− = h⊥1d ×H⊥1,fav + h⊥1u ×H⊥1,unfav

useful linear combinations

σ
cos 2φ
π+ − σcos 2φ

π− = (h⊥1u − h⊥1d)× (H⊥1,fav −H⊥1,unfav)

σ
cos 2φ
π+ + σ

cos 2φ
π− = (h⊥1u + h⊥1d)× (H⊥1,fav +H⊥1,unfav)
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h⊥1T

multiplies si(2kikj − k2
⊥δ

ijSj , where si quark
transversity, and Sj nucleon transverse spin

for example, h⊥1T > 0 implies nucleon prolate when
quark transversity parallel nucleon spin

and more oblate when quark transversity
anti-parallel nucleon spin

and for some spin configurations may even
resemble a pretzel ... (G.A. Miller, 2003)
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h⊥1T

contributes to matrix elements where both quark- and nucleon
helicities flip — in opposite directions

→֒ may change quark OAM by two units (p-p or s-d interference)

p-p: consider quark target with jx = 1
2

upper Dirac component spherically symmetric (s-wave), but
lower component (p-wave) has either quark spin parallel jx,
and l = 1, lx = 0 (prolate) or quark spin anti-parallel jx and
l = 1, lx = +1 (oblate)
note: transversity 6= transverse spin! Different sign for lower
component...

→֒ oblate when quark transversity parallel jx and prolate when
quark transversity anti-parallel jx

→֒ h⊥1T < 0

suggests h⊥,u
1T < 0 and h⊥,d

1T > 0 (consistent with lattice (→
Ph.Hägler) and models (→ M.Radici; S.Boffi; ...)
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g1T and h⊥1L

g1T multiplies λSiki in TMD (λ = quark helicity):

→֒ distribution of longitudinally polarized quarks in ⊥ polarized
nucleon!

h⊥1L multiplies Λsiki (Λ = nucleon long. pol.)

→֒ distribution of quark transversity in longitudinally polarized
nucleon!

in ‘rest frame’ (i.e. with γ+ → γ0), both would vanish by rotational
invariance

can be generated by a boost to the IMF ‘Melosh rotation’, e.g.
quarks with ⊥ momentum and polarization acquire long.
polarization component after boost to IMF (compare Thomas
precession)
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Summary

GPDs FT←→ IPDs (impact parameter dependent PDFs)

E(x, 0,−∆2
⊥) −→ ⊥ deformation of PDFs for ⊥ polarized target

→֒ κq/p ⇒ sign of deformation

→֒ attractive FSI⇒ f⊥u
1T < 0 & f⊥d

1T > 0

‘parton interpretation’ of Ji relation in terms as ‘transverse shift’ of
T++

ĒT ↔ −h⊥1
peanuts, donuts, pretzels, worm-gears
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What is Orbital Angular Momentum?

Ji decomposition

Jaffe decomposition

recent lattice results (Ji decomposition)

model/QED illustrations for Ji v. Jaffe
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The nucleon spin pizza(s)

Ji Jaffe & Manohar

1
2∆Σ 1

2∆Σ

Jg
∆G

Lq

Lq

Lg

‘pizza tre stagioni’ ‘pizza quattro stagioni’

only 1
2∆Σ ≡ 1

2

∑

q ∆q common to both decompositions!
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Angular Momentum Operator

angular momentum tensor Mµνρ = xµT νρ − xνTµρ

∂ρM
µνρ = 0

→֒ J̃ i = 1
2ε

ijk
∫

d3rM jk0 conserved

d

dt
J̃ i =

1

2
εijk

∫

d3x∂0M
jk0 =

1

2
εijk

∫

d3x∂lM
jkl = 0

Mµνρ contains time derivatives (since Tµν does)

use eq. of motion to get rid of these (as in T 0i)

integrate total derivatives appearing in T 0i by parts

yields terms where derivative acts on xi which then
‘disappears’

→֒ J i usally contains both
‘Extrinsic’ terms, which have the structure ‘~x× Operator’,
and can be identified with ‘OAM’
‘Intrinsic’ terms, where the factor ~x× does not appear, and
can be identified with ‘spin’ What can we learn from TMDs? – p.38/58



Angular Momentum in QCD (Ji)

following this general procedure, one finds in QCD

~J =

∫

d3x
[

ψ†~Σψ + ψ†~x×
(

i~∂ − g ~A
)

ψ + ~x×
(

~E × ~B
)]

with Σi = i
2ε

ijkγjγk

Ji does not integrate gluon term by parts, nor identify gluon
spin/OAM separately

Ji-decomposition valid for all three components of ~J , but usually
only applied to ẑ component, where the quark spin term has a
partonic interpretation

(+) all three terms manifestly gauge invariant

(+) DVCS can be used to probe ~Jq = ~Sq + ~Lq

(-) quark OAM contains interactions

(-) only quark spin has partonic interpretation as a single particle
density
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Ji-decomposition
1
2∆Σ

Jg

Lq

Ji (1997)

1

2
=
∑

q

Jq + Jg =
∑

q

(

1

2
∆q + Lq

)

+ Jg

with (Pµ = (M, 0, 0, 1), Sµ = (0, 0, 0, 1))

1

2
∆q =

1

2

∫

d3x 〈P, S| q†(~x)Σ3q(~x) |P, S〉 Σ3 = iγ1γ2

Lq =

∫

d3x 〈P, S| q†(~x)
(

~x× i ~D
)3

q(~x) |P, S〉

Jg =

∫

d3x 〈P, S|
[

~x×
(

~E × ~B
)]3

|P, S〉

i ~D = i~∂ − g ~A
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Ji-decomposition
1
2∆Σ

Jg

Lq

~J =
∑

q
1
2q
†~Σq + q†

(

~r × i ~D
)

q + ~r ×
(

~E × ~B
)

applies to each vector component of nucleon
angular momentum, but Ji-decomposition usually
applied only to ẑ component where at least quark spin has
parton interpretation as difference between number densities

∆q from polarized DIS

Jq = 1
2∆q + Lq from exp/lattice (GPDs)

Lq in principle independently defined as matrix elements of

q†
(

~r × i ~D
)

q, but in practice easier by subtraction Lq = Jq − 1
2∆q

Jg in principle accessible through gluon GPDs, but in practice
easier by subtraction Jg = 1

2 − Jq

further decomposition of Jg into intrinsic (spin) and extrinsic
(OAM) that is local and manifestly gauge invariant has not been
found
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Lq for proton from Ji-relation (lattice)

lattice QCD⇒ moments of GPDs (LHPC; QCDSF)

→֒ insert in Ji-relation

〈

J i
q

〉

= Si

∫

dx [Hq(x, 0) + Eq(x, 0)] x.

→֒ Lz
q = Jz

q − 1
2∆q

Lu, Ld both large!

present calcs. show
Lu + Ld ≈ 0, but

disconnected
diagrams ..?

m2
π extrapolation

parton interpret.
of Lq...
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Angular Momentum in QCD (Jaffe & Manohar)

define OAM on a light-like hypesurface rather than a space-like
hypersurface

J̃3 =

∫

d2x⊥

∫

dx−M12+

where x− = 1√
2

(

x0 − x−
)

and M12+ = 1√
2

(

M120 +M123
)

Since ∂µM
12µ = 0

∫

d2x⊥

∫

dx−M12+ =

∫

d2x⊥

∫

dx3M120

(compare electrodynamics: ~∇ · ~B = 0 ⇒ flux in = flux out)

use eqs. of motion to get rid of ‘time’ (∂+ derivatives) & integrate
by parts whenever a total derivative appears in the T i+ part of
M12+
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Jaffe/Manohar decomposition
1
2∆Σ

∆G

∑

q Lq

Lg

in light-cone framework & light-cone gauge
A+ = 0 one finds for Jz =

∫

dx−d2r⊥M
+xy

1

2
=

1

2
∆Σ +

∑

q

Lq + ∆G+ Lg

where (γ+ = γ0 + γz)

Lq =

∫

d3r 〈P, S| q̄(~r)γ+
(

~r × i~∂
)z

q(~r) |P, S〉

∆G = ε+−ij

∫

d3r 〈P, S|TrF+iAj |P, S〉

Lg = 2

∫

d3r 〈P, S|TrF+j
(

~x× i~∂
)z

Aj |P, S〉
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Jaffe/Manohar decomposition
1
2∆Σ

∆G

∑

q Lq

Lg

1

2
=

1

2
∆Σ +

∑

q

Lq + ∆G+ Lg

∆Σ =
∑

q ∆q from polarized DIS (or lattice)

∆G from
→
p
←
p or polarized DIS (evolution)

→֒ ∆G gauge invariant, but local operator only in light-cone gauge
∫

dxxn∆G(x) for n ≥ 1 can be described by manifestly gauge inv.
local op. (−→ lattice)

Lq, Lg independently defined, but

no exp. identified to access them

not accessible on lattice, since nonlocal except when A+ = 0

parton net OAM L = Lg +
∑

q Lq by subtr. L = 1
2 − 1

2∆Σ−∆G

in general, Lq 6= Lq Lg + ∆G 6= Jg

makes no sense to ‘mix’ Ji and JM decompositions, e.g. Jg −∆G

has no fundamental connection to OAM
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Lq 6= Lq

Lq matrix element of

q†
[

~r ×
(

i~∂ − g ~A
)]z

q = q̄γ0
[

~r ×
(

i~∂−g ~A
)]z

q

Lz
q matrix element of (γ+ = γ0 + γz)

q̄γ+
[

~r × i~∂
]z

q
∣

∣

∣

A+=0

For nucleon at rest, matrix element of Lq same as that of

q̄γ+
[

~r ×
(

i~∂−g ~A
)]z

q

→֒ even in light-cone gauge, Lz
q and Lz

q still differ by matrix element

of q†
(

~r × g ~A
)z

q
∣

∣

∣

A+=0
= q† (xgAy − ygAx) q

∣

∣

A+=0
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Summary part 1:

Ji: Jz = 1
2∆Σ +

∑

q Lq + Jg

Jaffe: Jz = 1
2∆Σ +

∑

q Lq + ∆G+ Lg

∆G can be defined without reference to gauge (and hence gauge
invariantly) as the quantity that enters the evolution equations

and/or
→
p
←
p

→֒ represented by simple (i.e. local) operator only in LC gauge and
corresponds to the operator that one would naturally identify with
‘spin’ only in that gauge

in general Lq 6= Lq or Jg 6= ∆G+ Lg, but

how significant is the difference between Lq and Lq, etc. ?
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OAM in scalar diquark model

[M.B. + Hikmat Budhathoki Chhetri (BC), PRD 79, 071501 (2009)]

toy model for nucleon where nucleon (mass M ) splits into quark
(mass m) and scalar ‘diquark’ (mass λ)

→֒ light-cone wave function for quark-diquark Fock component

ψ
↑
+ 1

2

(x,k⊥) =
(

M +
m

x

)

φ ψ
↑
− 1

2

= −k
1 + ik2

x
φ

with φ = c/
√

1−x

M2−
k2
⊥

+m2

x
−

k2
⊥

+λ2

1−x

.

quark OAM according to JM: Lq =
∫ 1

0
dx
∫

d2k⊥

16π3 (1− x)
∣

∣

∣
ψ
↑
− 1

2

∣

∣

∣

2

quark OAM according to Ji: Lq = 1
2

∫ 1

0
dxx [q(x) +E(x, 0, 0)]− 1

2∆q

 (using Lorentz inv. regularization, such as Pauli Villars
subtraction) both give identical result, i.e. Lq = Lq

not surprising since scalar diquark model is not a gauge theory
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OAM in scalar diquark model

But, even though Lq = Lq in this non-gauge theory

Lq(x) ≡
∫

d2k⊥
16π3

(1−x)
∣

∣

∣
ψ
↑
− 1

2

∣

∣

∣

2

6= 1

2
{x [q(x) + E(x, 0, 0)]−∆q(x)} ≡ Lq(x)

0

0.05

0.1

0.15

0.2

0.2 0.4 0.6 0.8 1
x

L 
q (x)

L 
q (x)

→֒ ‘unintegrated Ji-relation’ does not yield x-distribution of OAM
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OAM in QED

light-cone wave function in eγ Fock component

Ψ↑
+ 1

2
+1

(x,k⊥) =
√

2
k1 − ik2

x(1− x)φ Ψ↑
+ 1

2
−1

(x,k⊥) = −
√

2
k1 + ik2

1− x φ

Ψ↑− 1
2
+1

(x,k⊥) =
√

2
(m

x
−m

)

φ Ψ↑− 1
2
+1

(x,k⊥) = 0

OAM of e− according to Jaffe/Manohar

Le =
∫ 1

0
dx
∫

d2k⊥

[

(1− x)
∣

∣

∣
Ψ↑

+ 1
2
−1

(x,k⊥)
∣

∣

∣

2

−
∣

∣

∣
Ψ↑

+ 1
2
+1

(x,k⊥)
∣

∣

∣

2
]

e− OAM according to Ji Le = 1
2

∫ 1

0
dxx [q(x) + E(x, 0, 0)]− 1

2∆q

 Le = Le + α
4π 6= Le

Likewise, computing Jγ from photon GPD, and ∆γ and Lγ from

light-cone wave functions and defining L̂γ ≡ Jγ −∆γ yields

L̂γ = Lγ + α
4π 6= Lγ

α
4π appears to be small, but here Le, Le are all of O(α

π )
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OAM in QCD

→֒ 1-loop QCD: Lq − Lq = αs

3π

recall (lattice QCD): Lu ≈ −.15; Ld ≈ +.15

QCD evolution yields negative correction to Lu and positive
correction to Ld

→֒ evolution suggested (A.W.Thomas) to explain apparent
discrepancy between quark models (low Q2) and lattice results
(Q2 ∼ 4GeV 2)

above result suggests that Lu > Lu and Ld > Ld

additional contribution (with same sign) from vector potential due
to spectators (MB, to be published)

→֒ possible that lattice result consistent with Lu > Ld
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Summary JiJaffe & Manohar

1
2∆Σ1

2∆Σ

Jg
∆G

∑

q Lq

∑

q Lq

Lg

inclusive
→
e
←
p /
→
p
←
p

provide access to

quark spin 1
2∆q

gluon spin ∆G

parton grand total OAM L ≡ Lg +
∑

q Lq = 1
2 −∆G−∑q ∆q

DVCS & polarized DIS and/or lattice provide access to

quark spin 1
2∆q

Jq & Lq = Jq − 1
2∆q

Jg = 1
2 −

∑

q Jq

Jg −∆G does not yield gluon OAM Lg

Lq − Lq = O(0.1 ∗ αs) for O (αs) dressed quark

What can we learn from TMDs? – p.52/58



Announcement:

workshop on Orbital Angular Momentum of Partons in Hadrons

ECT∗ 9-13 November 2009

organizers: M.B. & Gunar Schnell

confirmed participants: M.Anselmino, H.Avakian, A.Bacchetta,
L.Bland, D.Boer, D.Fields, L.Gamberg, G.Goldstein,
M.Grosse-Perdekamp, P.Hägler, X.Ji, R.Kaiser, E.Leader,
N.Makins, A.Miller, D.Müller, P.Mulders, A.Schäfer, G.Schierholz,
O.Teryaev, W.Vogelsang, F.Yuan
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Summary

distribution of ⊥ polarized quarks in unpol. target described by
chirally odd GPD Ē

q
T = 2H̄q

T +E
q
T

→֒ attractive FSI⇒ measurement of h⊥1 (DY,SIDIS) provides
information on Ēq

T and hence on spin-orbit correlations

expect:

h
⊥,q
1 < 0 |h⊥,q

1 | > |fq
1T |

x2-moment of chirally odd twist-3 PDF e(x) −→ transverse force on

transversly polarized quark in unpolarized target (−→ Boer-Mulders)

see also: M.B., A.Miller, and W.-D.Nowak, ‘Spin-Polarized
High-Energy Scattering of Charged Leptons on Nucleons’,
hep-ph/0812.2208
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Impact parameter dependent PDFs

No relativistic corrections (Galilean subgroup!)

→֒ corrolary: interpretation of 2d-FT of F1(Q
2) as charge density in

transverse plane also free from relativistic corrections

q(x,b⊥) has probabilistic interpretation as number density
(∆q(x,b⊥) as difference of number densities)

Reference point for IPDs is transverse center of (longitudinal)
momentum R⊥ ≡

∑

i xiri,⊥

→֒ for x→ 1, active quark ‘becomes’ COM, and q(x,b⊥) must
become very narrow (δ-function like)

→֒ H(x, 0,−∆2
⊥) must become ∆⊥ indep. as x→ 1 (MB, 2000)

→֒ consistent with lattice results for first few moments

Note that this does not necessarily imply that ‘hadron size’ goes to
zero as x→ 1, as separation r⊥ between active quark and COM
of spectators is related to impact parameter b⊥ via r⊥ = 1

1−xb⊥.
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f⊥1T (x,k⊥)DY = −f⊥1T (x,k⊥)SIDIS

a) b)

time reversal: FSI↔ ISI

SIDIS: compare FSI for ‘red’ q that is being knocked out with ISI for an
anti-red q̄ that is about to annihilate that bound q

→֒ FSI for knocked out q is attractive

DY: nucleon is color singlet→ when to-be-annihilated q is ‘red’, the
spectators must be anti-red

→֒ ISI with spectators is repulsive

What can we learn from TMDs? – p.56/58



What is a Polarizability?

Polarizability is the relative tendency of a charge distribution, like
the electron cloud of an atom or molecule, to be distorted from its
normal shape by an external electric field, which may be caused
by the presence of a nearby ion or dipole (Wikipedia)

It may be consistent with this original use of the term to enlarge
the definition to encompass all observables that describe the ease
with which a system can be distorted in response to an applied
field or force

Suppose one enlarges this definition to encompass ‘how the color
electric and magnetic field responds to the spin of the nucleon’

→֒ many other obeservables also become ‘polarizabilities’, e.g.
∆q, as is describes how the quark spin responds to the spin of
the nucleon
~µN , as it describes how the magnetic field of the nucleon
responds to the spin of the nucleon
~Lq, as it describes how the quark orbital angular momentum
responds to the spin of the nucleon
as well as many other ‘static’ properties of the nucleonWhat can we learn from TMDs? – p.57/58



Sivers Mechanism inA+ = 0 gauge

Gauge link along light-cone trivial in light-cone gauge

U[0,∞] = P exp

(

ig

∫ ∞

0

dη−A+(η)

)

= 1

→֒ Puzzle: Sivers asymmetry seems to vanish in LC gauge
(time-reversal invariance)!

X.Ji: fully gauge invariant definition for P (x,k⊥) requires
additional gauge link at x− =∞

f(x,k⊥) =

∫

dy−d2y⊥
16π3

e−ixp+y−+ik⊥·y⊥

×
〈

p, s
∣

∣q̄(y)γ+U[y−,y⊥;∞−,y⊥]U[∞−,y⊥,∞−,0⊥]U[∞−,0⊥;0−,0⊥]q(0)
∣

∣ p, s
〉

.

back
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